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Abstract-Two-dimensional conjugate free convection due to a vertical plate of finite extent adjacent to a 
semi-infinite porous medium is investigated numerically using finite-difference techniques. Computed 
solutions to the governing heat and momentum equations are obtained for a wide range of different values 
of the non-dimensional parameters that are present in the problem, namely the Rayleigh number, Ra, the 
thermal conductivity ratio, k, between the plate and the porous medium, and the plate aspect ratio, i. The 
results give good agreement with results obtained by other authors for k, Ra D 1, and compare very 

favourably with an approximate analytical one-dimensional analogue which is developed for Ra >> 1. 

1. INTRODUCTION 

THE PROBLEM of natural convection due to a heated 

vertical plate embedded in a fluid-saturated porous 
medium is of considerable practical and fundamental 
interest. Heat transfer from a heated vertical plate 
provides probably one of the most basic scenarios 
for natural convection problems. Variations of the 
problem occur frequently in the literature (see, for 
example, Ingham and Brown [ 11, Cheng and Pop [2]), 
although to the best of the authors’ knowledge there 
have been only a few works which deal with con- 
duction-convection conjugate effects. Perhaps the 
most important contributions in this field were made 
by Bejan and Anderson [3,4] who looked at the con- 
jugate nature of heat transfer within a configuration 
where a conductive impermeable partition separates 
two fluid reservoirs which are at different tempera- 
tures ; even there, however, the analysis was limited 
to the case of a thin plate. Furthermore, investigations 
in the literature relating to conjugate effects in other 

geometries are not abundant either ; for example, con- 
vection from a horizontal cylinder in an infinite fluid 
or fluid-saturated porous medium has only recently 
been studied by Kimura and Pop [5,6]. It is, therefore, 
the dearth of work in this subject which provides the 
motivation for this paper. 

In what follows, in Section 2 we provide a math- 
ematical formulation of the steady-state problem, and 
write down the appropriate non-dimensional govern- 
ing equations. In Section 3, we indicate a simple one- 
dimensional analogue for the 2-d equations in Section 
2. In Sections 4 and 5, with the aid of a numerical 
solution to the two-dimensional momentum and heat 
equations, we are able to predict theoretically the flow 
and temperature distributions in the solid and the 
porous medium; in addition, we demonstrate the 
effect of key non-dimensional parameters on the prob- 
lem, namely the Rayleigh number, the ratio of the 

thermal conductivities of the solid and porous med- 
ium and the aspect ratio of the solid plate, and show 
how the present problem reduces to that of a heated 
vertical plate considered by Cheng and Minkowycz 

[7]. Also, we demonstrate the good agreement 
between the full computations and the l-d analogue 
of Section 3. Conclusions are drawn in Section 6. 

2. MATHEMATICAL FORMULATION 

Consider the steady free convection flow due to a 

rectangular plate occupying the region -a < x < 0, 
-(b/2) < y < (b/2), adjacent to a semi-infinite fluid- 
saturated porous medium (x > 0, - co < y < co) at 
temperature T, (Fig. 1). The left-hand side of the 
plate is held at a uniform temperature T, (> T,), 
whilst the sides y = + (b/2) are insulated ; for the 
porous medium, there is no heat flux and no normal 
outflow across x = 0, lyl > (b/2). For x = 0, ly( < 
(b/2), we expect both continuity of temperature and 
heat flux ; in addition, we assume that the porous 
medium is isotropic and homogeneous and that the 
fluid is incompressible. Invoking the Boussinesq- 
Darcy approximation, the free convection flow is 
described by the equations of continuity 

!Z,%O 
ax ay (1) 

and momentum 

au au gPK aTr _-_= 
ay ax v ax’ 

(2) 

the equation of energy in the fluid-porous medium 

and the equation of heat transfer inside the solid plate 
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NOMENCLATURE 

;: 
thickness of the conducting plate T, constant temperature of ambient fluid 

length of the conducting plate U. c dimensionless velocity components along 

9 acceleration due to gravity i-v, 4‘) axes 

k,- effective thermal conductivity of the _Y horizontal coordinate 

porous medium X, size of computational domain in 

k, thermal conductivity of the plate .u-direction 

k thermal conductivity ratio. k,/k, ? vertical coordinate 

K permeability of the porous medium Y, size of computational domain in 

M; total number of grid points in the j,-direction. 

.u-direction in conducting plate 
M; total number of grid points in the Greek symbols 

y-direction in conducting plate thermal diffusivity 

M: total number of grid points in the ; coefficient of thermal expansion 

x-direction in porous medium s boundary layer thickness 

Mi total number of grid points in the At) temperature increment 

y-direction in porous medium Ati streamline increment 

Ru Rayleigh number for the porous medium, (1, dimensionless temperature in the solid 

Kyfl( T, - T, )b/av (1, dimensionless temperature in the porous 

Tb dimensionless average boundary medium 

temperature, ( Tb - T,.)/( T, - T,) d aspect ratio, n/h 

T, constant temperature of heated side of 1’ kinematic viscosity 

plate 4 dimensionless streamfunction. 

?‘T, r”T 
~~~~ + 

saturated porous medium and the solid plate respec- 
is’ i,,’ ’ = 0. (4) tively, and the physical constantsy. p, v, K, J (and later 

where (u, LI) are the velocity components in the (x. y) 
k, and k,) are as given in the table of nomenclature. 

directions, T, and T, are the temperatures of the fluid- 
Equations (l)-(4) are subject to the following bound- 
ary conditions : 

u=O on .Y = 0. (5) 

h 
T,=T,,lc,~+~=k,~ on .\-=O.[J’~<~. (6) 

ZT, tJ 

r7.u 
~~ =0 on .u=O, /j*/ >2. (7) 

h 
T, = T, on .Y = -u, IJ’] < 3, (8) 

T, + T, as .x + x. j‘ --t + i(i , (10) 

1’ + 0 a5 .s+ I, (11) 

u-t0 as I’ + i_ Y., (12) 

By employing the following nondimensionalisation, 

subsequently dropping the asterisks and then defining 
the dimensionless streamfunction by FIG. I. Sketch of geometry for natural convection. 
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a* ati 
u=av’ 

2,= -- 

dX' 

we arrive at the following system of dimensionless 
equations for momentum and heat transfer, respec- 
tively, in the porous medium, 

as, 
V’$ = -Ra%, (13) 

(14) 

where $ and Br are the dimensionless streamfunc- 
tion and temperature, respectively ; also, Ra = 

g/Xb([r, - T,)/av is the Rayleigh number for the 
fluid-porous medium and V* denotes the two-dimen- 
sional Laplacian. In addition we have the equation of 
heat transfer in the solid, 

V%, = 0, (15) 

where 0, denotes the dimensionless temperature in 
the solid. Equations (13)-(15) are now subject to the 
nondimensional form of the boundary conditions (5)- 
(12), that is 

$=O on x=0, (16) 

30, 
7~ = 0 on x = 0, 1~1 > k, (18) 

8, = 1 on x = -I, 1~~1 < i, (19) 

ao 
A=0 on y= &f, -R,<x,<O, 
aJ) 

(20) 

Of-+0 as x--tco,y+ *cc, (21) 

a+ 
ax 

-+O as x+co, (22) 

ati 
(23) 

where A = a/b denotes the aspect ratio of the con- 
ducting plate and k = ks/kkf is the ratio of the thermal 
conductivities in the conducting solid and the porous 
medium. The physical quantities which are then of 
most interest are the dimensionless local Nusselt 
number, given by 

and the dimensionless average Nusselt number, given 

by 

3. APPROXIMATE ANALYTICAL SOLUTION 

Before proceeding with a numerical solution to 
equations (13)-(23), it is useful to consider first an 
approximate one-dimensional solution to the con- 
jugate heat transfer problem; this may be done for 
Ra >> I by considering the heat balance between the 
solid and fluid interface (x = 0, Jyf < (b/2)). The heat 
flux per unit area q” may be expressed as 

q,, = k (T, - Tb) = k CT, - Tm> 
s-- a f 6 ’ (24) 

where Tb is the average temperature at the interface, 
defined by 

and 6 is the thickness of the boundary layer along the 
interlace which is given by 

6 _ = 1 ]Ty&*-(m 
b 

. c f (25) 

where the last equation has been obtained using (see 
Cheng and Minkowycz [7J) 

% = 0.888Ra* ‘I*, (26) 

with Ra* as the actual Rayleigh number, based on 
(Tb-T,). In addition, noting that the apparent 
Rayleigh number, Ra, whch is based on the tempera- 
ture difference (Tc - TK) in the conjugate problem, 
is related to the actual Rayleigh number, by 
Ra* = RaTb, where we have defined Fr, = (T, - T,)/ 

(Tc - T,), we may combine (24) and (25) to obtain 

F(X) = ftx3+x2-1 = 0, (27) 

where X=,/(T,) and ,U (=IRa’~*/l.l26k > 0) is 
analogous to the Biot number which often occurs in 
conduction studies (see, for example, Bejan [S]). It is 
then straightforward to derive that (27) has only one 
real root if p > (2/,/27), two real roots if p = 21427 
and three real roots if p < (2/427). For the second 
and third cases, it is clear that, since F’(X) = 0 when 
X = 0, - (2/3~) and F( - I) = --p (<O), there is a 
unique solution for ‘?b such that 0 < ?” < 1 ; hence 
there is a unique solution for Fb for all values of g, 
which may be shown to lie in the interval [0, l] and 
derived to be 

2 
if@=----, 

427 
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Flc;. 2. Solution to equation (28) for Th as a function of p. 

where y = (2711~12) - 1. The solution for T,, as a func- 
tion of p is plotted in Fig. 2, and will be compared 
later with the numerical computations of Sections 4 

and 5. 
Further, from the definition of the average Nusselt 

number (Nu) in terms of Th. we have 

which suggests that 

Although we have no means of determining this con- 
stant exactly, the aim is to try different values to see 
which one best fits the numerical results to be obtained 
in Section 5; ultimately, in fact, a value of 0.9 was 

deemed suitable. 
Despite the ad hoc nature of this analytical 

approach, several points arc worthy of note. First, 
from an engineering perspective, equations (28) and 
(29) are useful because they provide closed-form 
expressions for T,, and Nu in terms of the other par- 

ameters in the problem, most notably the apparent 
Rayleigh number, based on the prescribed tem- 
perature difference between the heated plate and the 
porous medium, as opposed to the a priori inde- 
terminable actual Rayleigh number. Second, from an 
analytical viewpoint. it is worth noting that for all 
values of Ru. k and i., the cubic equation (27) leads 
to a unique solution for F,,, as one would expect on 
physical grounds. 

4. NUMERICAL SOLUTION 

The partial differential equations (13)- (15) wcrc 
finite-differenced using a control volume approach 
and non-uniform grid network as described by Patan- 
kar [9]. Initially, 5000 nodal points were used for the 
discretisation of the porous medium (50 in the .Y- 
direction and 100 in the y-direction), whilst for the 

solid plate, 400 nodal points (20 in both .Y and J‘ 
directions) were employed. One difficulty, however. 
was to determine and to implement numerically the 
Fdr field boundary conditions (21) -(23). In order to 

allow for the anticipated development of a thermal 
plume near I = 0 as ~3 + x, it was decided instead to 
use open boundary conditions given by 

0, = 0 ifzr < 0 at \- = X, , 

?(I, 

i.\_ 
= 0 if ~1 > 0 at ,v = .y , . 

I), = 0 if I‘ < 0 atF = Y, , 

dl), 

ij, 
= 0 if v > 0 at J’ = Y, 

II, =Oifr>Oaty= -}~,. 

(711, 

?J 
=Oifr.<Oat_lr= --Y,. 

;fi 
^ =Oat.r=X,. 
(‘.Y 

i;* 

?.r 
=OatJ,= +Y,. 

where the constants X, and Y, were varied between 
2 and IO, in order to determine the effect of com- 
putational domain size on the solution. This is dem- 

onstrated in Fig. 3. where &?/Ra’ ’ is plotted against 
X, (= T, ) with k = 1000 and RLL = 1000. In particu- 
lar. we observe that the difference between the values 
of Nu/Ra”’ for X, = 5 and 10 is of the order of a fcu 

per cent; however, in view of the saving in terms ot 
computing time which accrues by using X, = 5 
instead of X, = IO, coupled with not too great a loss 
in terms of accuracy, subsequent calculations were 
carried out using the former value. The code was 
tested further by keeping k = 1000. and varying KU : 

in this case. we expect that, for large values of RN, the 
results for the local Nusselt number at the conjugate 
boundary should approach those of Cheng and Min- 
kowycz [7] for natural convection due to an infinitely 
long isothermal plate adjacent to a porous medium. 
That this was indeed the case is shown in Fig. 4, where 

the quantity Nu/Ra ‘I’ is plotted against length along 

the plate for different values of the Rayleigh number. 
In addition. in Fig. 5 we demonstrate the effect of 

Nu 
Ra112 

FIG. .i. (NU/RU”) vs size of computational domain (X, ). 
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Nu I Ra: 
1.2 

0.4 

- analytical 
-- Ra=200 
... Ra=500 
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Y 

FIG. 4. (Nu/Ra’!‘) vs distance along plate (y) (k = 1000). 

the open boundary conditions discussed earlier. The 
figure shows the streamline and isotherm plots 
(streamlines on the left) for the entire computational 
domain for the case when k = 1, i = 1 and Ra = 800, 
and illustrates that the open boundary conditions 
approximate adequately to the actual physical bound- 
ary conditions posed by equations (lo)-( 12). 

Each of the above computations, however, required 
approximately 10 h of CPU time on a Titan Work- 
station, so it was decided to carry out subsequent 
computations for 1 = 1 using MS, = MS2 = 10, 
M: = 25, M\ = 50 ; for different values of 1, M”, and 
M; were altered in such a way as to keep the mesh 
spacing in both x and y directions in the solid at most 
0.1. In all cases, a refined mesh was used adjacent 
to the conjugate boundary in order to take account 
accurately of the boundary conditions given by (17). 
Since the numerical scheme employed was very similar 
to that used by Kimura and Pop [5], we omit further 

details, except to mention that the convergence cri- 
terion used for the termination of the computation 
was 

where the superscript n denotes the iteration order. 
Instead, we move on to a presentation of the results, 
computed for X, = Y, = 5 and for a wide range of 
values of the parameters k, I and Ra. 

5. RESULTS 

Detailed streamline and isotherm behaviour are 
shown in Figs. 6-S for k = 1 and lo,1 = 0.25 and 1, 
and Ra = 50 and 800 ; in each figure, the left-hand 
plot represents the streamline pattern, the right-hand 
one the isotherm pattern. As might have been 
expected, thermal plumes, whose widths decrease with 
increasing Rayleigh number, are seen to develop near 
the top edge of the plate ; in addition, a thermal 
boundary layer is seen to develop at the conjugate 
boundary. Furthermore, as k is increased, the thermal 
resistance of the solid plate is reduced, resulting in a 
much stronger buoyancy force on the fluid-porous 
medium ; a similar effect is also obtained by decreasing 
the value of the aspect ratio, 1. Comparing the iso- 
therms for 1 = 0.25 (Fig. 8) and 1 = 1 (Fig. 7), one 
may observe that the thermal resistivity in the latter 
case is around half that for the former, a result which is 
somewhat different from that which one might expect 
from an analogy with a simple conduction problem 
involving two adjacent plates, one of thickness i 

1 

FIG. 5. Streamlines and isotherms for k = 1,1 = 1 and Ra = 800 (A$ = 5 and A0 = 0.1) 
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whose left-hand end is at unit temperature, the other 
of thickness 6 whose right-hand end is at zero tem- 
perature ; in this case, simple analysis shows that the 
boundary between the two plates attains a tem- 
perature 

and thence that for the case when kc? cc 1, the bound- 
ary temperature is roughly four times greater when 
1. = 0.25 than when i = 1. This provides a good exam- 
ple of the complications that arise because of con- 

jugate effects: the thermal resistivity within the ver- 
tical plate does not decrease in proportion to a 
reduction in its thickness, because the reduced res- 
istivity in the plate causes an increase in convective 
heat transfer in the porous medium, which thereby 

reduces the thermal resistivity on the porous side of 
the conjugate boundary also. 

Figures 9 and 10 show the variation of temperature 

and local Nusselt number, respectively, at the con- 
jugate boundary for k = 2.5, iL = 1 and Ra = 50 and 
800. These plots are quite typical of the results 
obtained for relatively low values of the parameter k. 

and indicate the essentially linear behaviour of the 
temperature with distance along the plate ; this effect 
is seen to a lesser extent for the Nusselt number. owing 

(‘-‘I 

T 

I 

i 

I 

1 n 

FIG. 6. Streamlines and isotherms for k = 1 and /1 = 1: (a) 
Ru = 50, A$ = 1 and AD = 0.1 ; (b) Ra = 800, A$ = 2 and 

A0 = 0.1. 

to the discontinuities in the flux at the endpoints 01 
the plate, although the profile is nevertheless linear 
along the plate’s central portion. For higher values of 
k, such as those used in obtaining the results in Fig. 
4, one may, however, expect a departure from 
linearity. The variations of the average temperature 

and the average Nussclt number at the conjugate 

boundary for different values of Ru. k and i. arc shown 
in Figs. II and 12. In particular, the computed results 

have been compared with those obtained using cqua- 

tion (28) from Section 3; as was mentioned in that 
section, the choice of 0.9 as the constant of pro- 

portionality resulting from equation (30) leads to very 

good agreement between analytical and computed 
results for a wide range of paratncter values. As 
regards the boundary temperature. however. one may 

observe that at the lowest value of the Raylcigh num- 

ber (Ra = 50). there is an apparent difference between 
the analytical and numerical predictions for some par- 
ameter sets (for example. k = 2.5 and IO. L = I ) : in 

retrospect. this is not too surprising since a boundary- 
layer approximation was used in developing equation 

(28). Nonetheless, the overall agreement may be 

deemed extremely good if one considers the com- 
plexity of the problem and the simplicity of the analy- 

sis. As regards the mean Nusselt number. it is clear 
that this becomes less dependent on the Rayleigh num- 

ber as the thermal conductivity ratio. I\. dccrcases: 

FIG. 7. Streamlines and isotherms for k = IO and i = I : (a) 
Ra=50,A$=landAt?=0.1;(b)Ra=800.A$=4and 

A0 = 0.1. 
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64 

FIG. 8. Streamlines and isotherms for k = 10 and 1 = 0.25 : 
(a)Ra=50,A~=1andA~=0.1;(b)Ra=800,A~=5 

and A8 = 0.1. 

0.: 

Tb 

0.: 

- Ra=50 
-- Aa= 

___________------- _________+______ 
______--- 

0.0 I 
- 0.5 0.0 0.5 

Y 
FIG. 9. Boundary temperature (TJ vs distance along plate 

(y) (k = 2.5, Ra = 50 and 800). 

within the presently investigated parameter range, the 
mean Nusselt number is essentially independent of 
the Rayleigh number when k < 2.5 and Ra > 200 for 
A= 1, and when k < 1 and Ra > 200 for 1= 0.25. 

6. CONCLUSION 

This investigation has considered the problem of 
conjugate free convection due to a vertical plate adjac- 
ent to a semi-infinite porous medium. By solving the 

Nu 

1.7 

0.0 I 
-0.5 0.0 0.5 

Y 
FIG. 10. Local Nusselt number (Nu) vs distance along plate 

(y) (k = 2.5, Ra = 50 and 800). 

heat and transfer equations numerically using finite- 
difference techniques, it has been possible to provide 
a detailed description of the effect of non-dimensional 
parameters such as the Rayleigh number, the ratio of 
the thermal conductivities and the plate aspect ratio 
on the flow and heat transfer characteristics. For 
high Rayleigh numbers, an approximate analytical 
approach was possible, the results of which were sub- 

Numerical 

0 k= IO 

A k = 2.5 

0 200 400 600 800 

Ra 
(4 

1.0 I I t 
- Analytical Numerical 

0.8 - 

0.6 - 

;T, 

0.4 - 

0.0 ’ n ’ a - 
0 200 400 600 800 1000 

Ra 
(b) 

FIG. 11. Average boundary temperature (r,) vs Rayleigh 
number (Ru) for k = 1, 2.5 and 10 : (a) 1 = 1; (b) 1 = 0.25. 
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tages over the fully-computed solution : it is very com- 
pact, it predicts satisfactorily the average temperature 
and Nusselt number at the conjugate boundary for a 
wide range of values of Ru. k and i, and requires 
negligible computing time. Overall, therefore, the dual 
analytical and computational approach adopted in 
this paper is thought to provide a comprehensive 
account of steady-state conjugate free convection 

induced by a heated vertical plate. 

10-l , “’ 

(a) 

103 

I 
102 103 

Ra 

(b) 

FIG. 12. Average Nusselt number (Nu) YS Rayleigh number 
(Rn) for k = I, 2.5 and 10: (a) i, = I ; 1, = 0.25. 

sequently seen to compare favourably with the full 
numerical computations. The analytical solution. 
although ad hoc in nature. does have several advan- 
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